Categories
Environment News Science Technology

The Future of Solar Energy

Sol-Term

Travelling Through Morocco

20 years ago my father retired from work, and to celebrate he gave me and my brothers £1000 each. I went to university and sat next to my buddy Sam, and asked her if she fancied going to spend the money on a holiday. I skateboarded to my favourite travel agents and booked flights to Morocco.

6 weeks, a long road trip. We divided the remaining money into daily allowance, $20 US per day. Not really enough. Well enough to eat, or travel, but not eat and travel. So on days that we travelled we only ate once, and on other days we ate twice. Not a lot though.

Anyway we wanted to go and see the sahara. We went from Casablanca via Radat and Meknes, down through Azru and all the way to Merzuga. It’s quite a thing to see. Then to Ouarzazate.

Now the Marocco of 20 years ago is not the country of today. And we were poor. We did not have enough money to take the national bus lines, we took the local buses, no windows, animals on the roof tied into canvas bags, goats inside. Today Ouarzazate is a world leader in solar energy.

Desert Solar Energy

Morocco wants to become a world leader in solar energy production. The development that is underway and newly online will eventually provide 20% of the country’s energy needs. It will be the largest concentrated solar power (CSP) plant in the world. The mirror technology it uses is different from the photovoltaic panels that we see on roofs the world over, but it will have the advantage of being able to continue producing power even after the sun goes down.

The system uses mirrors to heat an oil, known as heat transfer solution (HTF). Each parabolic mirror is 12 metres high and focussed on a steel pipeline carrying HTF that is warmed to 393C. It then goes into a heat transfer plant, is mixed with water that turns into steam and drives turbines.

In order to operate after dark excess heat is used to turn sand molten, the heat being released overnight allowing the plant to function for a few hours longer, and the plan is that in a couple of years time it will be able to operate 24 hours a day.

Distribution

If Morocco becomes self sufficient through solar wind and hydro, they will look towards exporting. There have been several projects involving laying power lines from North Africa into europe (Libia to italy comes to mind) but as far as I know nothing is currently operational.

For more details check out this article in the Guardian.

Categories
Computers Science Technology

Leap seconds

2012 was a leap year, 2016 will be too, as will 2020 – you get the picture.

Every four years, the Gregorian calendar observers what is known as a leap year, a year with one day extra than the previous three years, or than the next three. This is because the solar year (how long it takes the earth to complete an entire orbit of the sun) is almost 6 hours longer than the standard 365 days calendar year.

Solar vs Gregorian Time

There is however a small issue with leap years. The original rule of adding a leap day every fourth year ever so slightly overcompensates for the time difference, as the solar year is 365.2422 days long. With leap years the average year has 365.25 days, which is 0.0078 days too many! Also, our planets spin is slightly irregular, meaning that some [solar] days are slightly longer [as in milliseconds!] than others, whilst others are slightly shorter.

TimeYou might think that there really isn’t any point in worrying about 0.0078 days, as it would take over 128 years before all those tiny bits of days added up to make an entire day. However if we ignored the 0.0078 days, in 23,376 years we would have lost so much time, the seasons would have completely reversed, as there would be a huge 6 months of time distortion!

To solve the problem, clever scientists have worked out that if we miss out three leap days (omitting three leap years) every 400 years, then the average calendar year becomes 365.2425 days long. However this still leaves a 0.0003 day (or 25.92 second) difference each 400 year cycle – 0.0648 seconds every year. A relatively insignificant amount, but all the same, we want to be accurate, so a solution has been found!

Leap Seconds

Every so often we also get a leap second. Due to the irregularity of the movement of the earth, it is impossible to construct a precise schedule for these seconds.

23:59:60 - a leap secondLeap seconds are added in as and when they are needed, so the Gregorian measure of time should never be more than one second out of sync with the measure of time linked to the earth’s orbit.

Sometimes leap seconds are positive, meaning they add to time, and they can also [in theory] be negative.

Leap seconds are usually added to the end of the day, at the end of a year, or half year period. The most recent leap second was on July the 30th 2012, where one second was added to time, so it didn’t become the 1st of June the second after 23:59:59, it instead became 23:59:60.

Problems With Leap Seconds

Leap seconds are brilliant from a scientific perspective, as they help to keep time and the environment in almost perfect constant sync, year after year. However from a technical perspective, they pose some huge problems!

Remember the huge fuss about the Millennium bug, the problems the turn of the century was [thought] to cause and the money that was thrown at it? Ultimately, nothing major happened. Leap seconds pose a similar sort of technological issue, but the threat much more real.

The most recent leap second, caused major technical issues for firms all around the world. Just before the leap second, there was a solar storm, which disrupted technology, especially websites, needless to say this didn’t help the leap second scenario in the slightest!

One of the most high profile victims of the June 2012 leap second was social network Reddit. Due to the nature of its activates Reddit relies heavily on synchronised operations, as do Foursquare, LinkedIn, Gawker, and StumbleUpon, who were all also affected. When the time on the servers of these services was thrown out of sync by one second with the time Apache Cassandra and Java were displaying, their technical systems went into meltdown!

After a few hours, most of the technical blackout was over, and the majority of services were back up and running.

Six months notice is given prior to a leap second, and for many firms they are not a problem. Measures do need to be put in place, however if they are, there are [usually] no issues.

Should We Abolish The Leap Second?

From a scientific perspective, the leap second is a fantastic idea; it keeps time perfectly synchronised. However from a technical perspective it is a bit of a costly annoyance.

In January 2012, there was a meeting by the ITU, who discussed whether or not to drop the leap second. We could just ignore these time adjustments altogether, or we could add a leap hour every few hundred years. Despite hopes, the ITU were unable to reach a consensus, so have put off making a decision until 2015 – at the earliest.

Categories
News Search Engines

Google prunes some of its branches

It is that time again at Google when it has to prune some of its various branches. Since Google co-founder Larry Page took over the reins as CEO in April last year, Google has been reducing and trimming its projects to renew and regain focus.

Google has come under investor scrutiny as it is facing increasing competition from both Apple and Facebook.

This spring cleaning is part of the various cost cutting and refocusing efforts. In the latest cleaning exercise announced a few weeks ago, Google will be pulling the plug on seven of its projects.

1. Google Knol

Google launched Knol in 2007 to help improve web content and as a challenge to Wikipedia that enabled experts to collaborate on in-depth articles. Knol will be available till April 30, 2012, to enable users to download their Knols to a file and/or migrate them to the WordPress platform. After that till October 1, 2012, Knols cannot be viewed but users will be able to download and export content. After October 2012, the Knol content will no longer be available.

2. Google Gears

Google has closed the Gears browser extension for creating offline web applications and stopped supporting new browsers in March this year. From December 1, 2011, Gears-based Gmail and Calendar offline will not work across all browsers, and Gears will not be available for download from late December this year. Google announced that this is part of their effort to help incorporate offline capabilities into HTML5. Users can access Gmail, Calendar and Docs offline in Chrome.

3. Renewable Energy

Google has abandoned its ambitious plans to make renewable energy cheaper than coal. Google had started this project in 2007 as a means on driving down the price of renewable energy with a strong focus on solar power. Google announced that the head of the project, Bill Weihl (William E. Weihl) has left the company and it believes that other organizations were in a better position to take its efforts to the next level.

4. Google Wave

Google has earlier stopped further development on Google Wave. Now it has announced that as of January 31, 2012, Wave will be available as only a read-only version and users won’t be able to create new ones. This will be completed closed on April 30, 2012. Users can transfer individual waves using the existing PDF export feature.

5. Google Search Timeline

Google will be removing this feature that displays a historical graph of results for a search query. Users will now be able to restrict any search to particular time periods using the refinement tools on the left-hand side of the search page. Uses who wish to view graphs with historical trends for a web search can use Google Trends or Google Insights for data since 2004. If you need more historical data, the “Ngram Viewer” in Google Books offers the same information.

The Google Trends Product Logo

6. Google Friend Connect

Google Friend Connect, which is a social feature, will be discontinued from March, this is because Google wants people to start using the Google Plus social network instead.

7. Google Bookmarks

The feature will become unavailable from December 19, 2011. This enabled users to share bookmarks and collaborate with friends. The existing bookmark Lists will be retained and labelled to make it easier to identify. The other features of the Google Bookmarks will keep on functioning. The change won’t affect the non-English users as it was an English only feature.

This spring cleaning is only a sign that Google knows that it currently faces big competition, so it needs to make sure that it discontinues disused/inefficient services it provides.

Categories
Environment Science Series

Cleaner Electricity Production

Producing electricity is often a dirty and polluting affair. Here in the US most is still produced by burning coal, rather like in the 19th century. Nuclear power production is seen by some as an answer as it doesn’t throw a tone of gasses and toxins into the atmosphere and can produce an enormous amount of power in comparison to the fuel it uses. But nuclear power brings its own sets of problems, you only have to look at recent events in Japan or take a trip to Ukraine to see that. And parts of the North Sea round the British Isles are contaminated from leaks from an infamous UK nuclear power station that shall remain nameless (although like New York it too was so good they named it twice) and the unforeseeable problems involved in storing radioactive waste for tens of thousands of years to name but a few rather thorny issues.

However some people that define themselves as fighting for a cleaner environmental electricity production policy, do argue that nuclear power is a move in the right direction, that alternative forms could never provide enough power to feed the planet and the very fact that nuclear power production does not create tons of carbon means it is advantageous in fighting the possible problems of global warming. There are undoubtedly advantages and disadvantages to this form of power production, but political and financial interests are also important factors to bear in mind.

Clean electricity for a better world

There are several other ways of producing cleaner electricity though as we know, but they too have their problems. Building a dam to use the water to drive turbines can have devastating effects on the surrounding areas. Look at the Yangtze Dam project in China and the effect of this engineering project on the people and animals that used to inhabit the newly flooded areas.

Wind farms also seem a good solution but some people say they are ugly and here in Cape Cod in the US there is a large protest movement growing out of claims by people that live near wind turbines who claim health problems, stress and migraines due to the flickering effect of the blades turning in the sun.

Solar panels are always sold as a good option, but they are expensive to manufacture because processed silicon is costly due to its high demand. There are also the problems of how to dispose of the panel when it is no longer efficient and the nature of the silicon purification process.

In Italy farmers have taken government subsidies and covered their land with solar panels in a bid to improve profits. In some cases the panels form a sort of protection for the crops while they produce electricity, but in a lot of cases the agricultural land is just lost to a sea of silicon, causing people to complain both about the aesthetics and the land use issue. Government green incentives mean that there is no need to ask for planning permission so these ‘silicon farms’ as they are known are cropping up in some rather inopportune places (sorry, couldn’t resist the pun) and are in massive expansion as this article demonstrates.

But fortunately as we would hope in a blog like this there have been some really interesting developments recently in non silicon based solar energy production that we can look at.

The sun between someones hands
Harnessing the sun

A couple of years ago researchers in Italy unveiled something called the Dye Solar Cell (DSC). It doesn’t use silicon to produce electricity but guess what? It uses vegetable dye from egg plant (aubergines). Well not being a scientist myself I thought, ‘yes, plants do photosynthesis don’t they, why didn’t I think of that?’, and I wasn’t far wrong.

The cells don’t have the same productive power so the area needs to be bigger to produce the same amount of power but they are incomparably cheaper and greener. Ideal for use for example on large low buildings such as barns or industrial units that can have the entire roof covered in vegetable cells and produce the electricity the occupants require for free. Good news.

But what if you haven’t got a huge roof? Well an Austrian company called Bleiner AG has developed a type of paint called Photon Inside that has the same capability. It has to be applied in a few coats and cost more than standard paint but a 50 square metre wall generates 3 Kw of electricity. It was developed for use on sailing boats so that they could operate a radio and radar while out at sea. Sorry but the only articles I can find online are in Italian.

Konarka is an interesting American company who have developed a power generating plastic. It can be made very thin and comes in a roll that you just cut to size, stick on your Venetian blinds or any other surface that takes a lot of sun and away you go. They also sell Power Fibre, as you would imagine it is a thread that you can weave, so you can make textiles that produce energy and can be made into clothes. I like this idea, you could buy a computer case that charges the computer using sunlight as you walk to work.

At the Massachusetts Institute of Technology (MIT) they have recently unveiled their ability to print solar panels on to paper. A great breakthrough as it makes the technology easy to transport and place in position but also cheap and hardwearing (you can laminate it). Research at the University of Verona in Italy goes one step further, they are developing completely transparent thin sheets of solar panels that you can attach to the window and look through.

These final applications described above really take solar electric production to a higher level, as practically any surface can be used to produce electricity. The breakthrough here is in the technology required to transport the current more than its production, as attaching the diodes has long been the most difficult part of thin surface electricity production as they tend to come off with any movement in the surface.

Using the sea is also an option. Off the UK there is the giant Sea Snake trial taking place as well as the Oyster wave generator installation, and in the US buoys have been developed that generate electricity from their constant up and down motion, easy to place and a help rather than a hindrance to shipping.

As Christopher pointed out in a recent post, global warming is a real and serious problem and electricity production could be a major element in pollutant gas production, but as I hope to have shown above there are many interesting developments if we allow ourselves a slightly different point of view on electricity management.

A less centralized way of thinking and we could produce a lot of the electricity we need in situ, using our own buildings as power plants.

I have written more extensively on this problem on the Bassetti Foundation website and there are also various related articles about renewable energy sources and the problems involved in their use.

Next week I will have a look at possible engineering solutions for the problematic issue of global warming.

Categories
Environment Science Series

Cutting Fuel Emissions from Transport Systems

In this the second post of my series about environmental conservation issues, I look at technology whose use could contribute to lessening the planet’s dependency on fossil fuels.

One of the major concerns for the environmental lobby is, and has for a long time been, the environmental cost of transport systems. As we know the vast majority of goods and people use petrol as a propellant, produce lots of pollutants and don’t do the planet any good whatsoever.

There are various option however that are readily available today for cutting down on petrol use, and in this post I would like to introduce a few.

The internal combustion engine is a simple machine, an explosion in a chamber forces a piston out and that is attached to a rod that drives a wheel (or 4 in most cases), but it is a simple operation to exchange the explosion for another form of inertia. We can in fact run a standard vehicle on air, as these plans show.

An air powered engine
Plans for an Air Engine

In 2010 for example the Royal Melbourne Institute of Technology unveiled a prototype of a motorbike powered solely by compressed air. The project was created by lecturer Simon Curlis and carried out by a team of students. Curlis’s goal was to produce an emissions free motorbike capable of travelling at more than 100 miles per hour, a feat that went on to achieve on a dried up lake in Australia. Take a look at this report for further details.  

The motorbike is a standard Suzuki GP 100 frame fitted with a rotary engine and a couple of tanks of compressed air stored under the bodywork. A wonderful idea, but you just have to bear in mind that compressed air is highly explosive and doesn’t produce as much power as petrol, but is of course emissions free!

But we can address one of these problems as well as the cold hands in winter issue by investing in an AIR car.  In order to resolve the problem of having to store huge quantities of air the AIR car has a small petrol driven compressor that refills the tanks when they are low. The fuel required to maintain this system is incomparable, with the owners claiming at least 100 Km to two litres of fuel, with the advantage that you don’t need to use any petrol at all in town, you just run the compressors during out of town driving.

The development company that produce the cars above have signed a deal with TATA, and hope to produce production models soon, and they have several different models today including a small urban transport bus. Several US manufacturers are also following suit.

If a life on the ocean waves is more your scene take a look at the largest solar powered ship, currently sailing round the world. The 60 ton Planet Solar is an impressive looking catamaran, and can sail for 3 days without even seeing the sun due to its enormous production capacity and batteries. You can check it out via this video on YouTube.

The ship above may look like an expensive toy for boys, (as does this fuel free solar powered aeroplane), but solar powered sails do exist and are in use on commercial freighters. A company called Eco Marine Power produces rigid sails that not only harness the wind on large cargo ships but also produce electricity as they are in effect giant solar panel sails. Click here for a photo and description of their research. Ironically enough they are best suited to oil tankers, as they don’t have the problem of cranes for cargo that get in the way.

And talking about sailing ships another company called Sky Sails produces a large Kite that you attach to the front of your ship to harness the wind. On a 25000 ton ship the 320 square metre kite lowers fuel consumption by about 30%. Hardly new technology though, Sir Francis Drake knew how to do it!

Shipping may not strike you as particularly relevant to this argument but you might be surprised. Shipping is the main cause of sulphur emission into the atmosphere, and the problem is political in nature. At sea you can burn anything you want and so the shipping companies buy and burn something called heavy or bunker fuel, in short the dregs of the petroleum refining industry. Extremely polluting and damaging to the health. Had you ever noticed how much smoke a ship makes when it is steaming into the distance?

A schooner sailing vessel
Schooners are still in use across South East Asia

On a personal note I would just like to add that sailing ships are still used across South East Asia to transport goods. I saw lines of men and women carrying sacks of grain on their backs up planks on to wooden ships with my own eyes no more than 10 years ago. The photo above gives you an idea, although I did not take it. These wooden schooners are sailed to larger ports where they are unloaded by hand and their goods (sacks of foodstuffs) are left in piles that are then craned onto big ships and sent to Europe, unfortunately not by sail and producing a lot of smoke!

I haven’t addressed the related issue of bio fuels for use in transport in this article but will do so in a later post. Next week I will take a look at alternative forms of electricity production and new technological developments on that front.

Categories
Environment Science Series

Can We Improve the Health of the Planet? A Series.

“Have a bias towards action – let’s see something happen now. You can break that big plan into small steps and take the first step right away.” – Mohandas Karamchand Gandhi

A couple of weeks ago I read Christopher’s article on this blog entitled ‘We Need to Act on Climate Change For The Sake Of Others’ and it started me thinking about green technology.

Scientists are in general agreement that the Earth is warming, there is plenty of debate as to why however. A large proportion claims that this warming factor is caused (or at least worsened) by human actions such as burning fossil fuels and deforestation.

Members of this group therefore believe that we need to produce energy without burning fossil fuels and that we should take other steps to avoid releasing carbon into the atmosphere such as stopping deforestation (incidentally this is cause number 1, burning fossil fuels is secondary in comparison). I should say I count myself amongst them.

An unhealthy planet

Every Thursday over the next month or so I am going to post one of a series of articles that will look at different aspects of these problems. I want to propose an argument that I borrow from the sociological study of science and is directly drawn from an economic analysis. It is simple, and should be borne in mind when reading the posts.

When we think about costs we only think about money. How much for example does a litre of petrol cost? Or a flight to Boston from London? “Oh $3.50 a litre” or “$1200 dollars” we might say. But this excludes social and environmental costs that should be added on, a bit like governments add on VAT.

The real cost of my litre of petrol should include various other factors. How did the raw materials come out of the ground? Did the company leave a mess and pollute the local drinking water in the process? How was it refined, and transported? How much did the local people who live nearby suffer or benefit from its production? And finally how much pollution will it cause when I burn it?

And here we have a sliding scale, LPG is environmentally less damaging and therefore environmentally cheaper than petrol. By this logic natural gas might be cheaper than wood to heat your house too (unless produced through fracking some would argue), and taking the train might be cheaper than taking the bus. I hope this is a little clearer than a bland phrase about ‘going green’  and offers a slightly more defined point of view.

The series will be structured something like the following:

  • Environmentally cost efficient transport
  • Electricity production
  • Engineering climate change
  • Problems faced and the miracle cure
  • Conclusions and a review of comments

I hope to present you with some interesting new technologies that really offer a much ‘greener’ future, as well as looking at some of the ways that different institutions view and approach the problems that I will address.

I am certainly not pessimistic about the future but I don’t believe that ‘technology will save the day’ on its own, but a little thought and a few small actions from a lot a people can make an enormous difference (as someone once said).

I hope you will follow and comment, and don’t hold back on your criticisms, that is what I am here for.

Categories
Environment News Science

We need to act on climate change for the sake of others

In the South Pacific ocean lies three tiny atolls that go by the name of Tokelau. These islands have a population of around 1,500 people, around the size of a big village.

The Tokelau islands
The three tiny atolls that make up Tokelau

However, bad news is on the way for the people of Tokelau, as climate change is threatening every single one of the residents lives. Droughts are a real problem in the area, as despite being surrounded by sea water, there is very little freshwater that locals can use. Climate change means that rains are decreasing in the area, and drought is increasing.

The second issue for this tiny group of islands is the sea itself. Sea levels around the world are rising for two main reasons: ice caps are melting, and thermal expansion (when water gets hotter, it expands) – these are both caused by climate change, i.e. global warming of the planet.


The final issue for these tiny atolls is that they are made out of coral. Coral is a very delicate substance, that requires very specific conditions to grow and survive.

Basically, these islands are stuck between a rock and a hard place, and it doesn’t look like their situation is getting any better.

It is rather unfair of one to say that the use of fossil fuels on these islands is what has sealed their fate, as compared with the likes of China, the USA and the EU, the islands have virtually no greenhouse gas emission – they probably are responsible for less than 0.0001% of global emissions, leaving the rest of the world responsible for the other 99.9999%.

Despite this, Tokelau has announced that by September 2012, there will be no greenhouse gasses produced there at all, they will run 100% on renewable energy! Photovoltaic solar panels will make up 97% of their energy, whilst the rest will come from local coconut oil made into biodiesel. What is really amazing is that its per-capita income is only about $1,000 per year, a fraction of that in many western countries.

Why is Tokelau bothering though? Their fate is sealed, sea levels will rise further, drought will increase and coral will decline. However, this tiny group of islands believes that if they make a stand now, maybe, just maybe the rest of the world will follow.

The people of Tokelau will most likely be taken in by nearby neighbours, however their home islands will be lost forever, along with their natural beauty and potential. But that’s not the point.

I believe that Tokelau is a warning for what is to come for the rest of the earth. Climate change is happening and it’s real. If we carry on the way we are, we will almost surely destroy the planet we call home.

I have read predictions that by 2050 most of the worlds megacities and centres of economic and political power will be underwater. That includes the likes of London, California, the Netherlands and Bangladesh. That’s a lot of people who will be affected.

We need to take a stand now, for the sake of the future of planet earth.


A Europe centred picture of the Earth

Why not install solar on your roof? It could heat your hot water or power your electricity, even creating extra which you could sell back to the national grid! Why not have a small wind turbine set up in your back garden, that could do wonders for your energy bills!

Think about it. It is our world, we need to look after it.

From the bottom of my heart I ask that you think green, save resources and our home. We really are so lucky that in the whole of space, the perfect conditions came about so that our planet were ever to exist, with it’s vital magnetism and ozone layer, which helped to create and now sustains life.

Earth suspended in spaceWhat’s your opinion on this?